
Journal oJ: Engineering Physics and Thermophysics, VoL 69, No. 6, 1996 

H E A T  T R A N S F E R  A N D  H Y D R O D Y N A M I C S  N E A R  

C U R V I L I N E A R  S U R F A C E S  

A. A. Khalatov UDC 532.536 

This paper surveys the state-of-the-art in the field of heat transfer and hydrodynamics near surfaces with 

longitudinal curvature. 

1. I N T R O D U C T I O N  

Flow and heat transfer on surfaces with longitudinal curvature are very common in various areas of 

engineering. The flows are induced as a result of special design features of technical facilities or are created specially 

to intensify heat and mass transfer or improve thermogasdynamic processes. Flows near curvilinear surfaces are 

most frequently encountered in aviation, rocket technology, heat engineering, power-plant engineering, 

shipbuilding, and internal combustion engines. The effects of longitudinal curvature in technical facilities are 

usually combined with the action of other factors, such as the longitudinal pressure gradient,  injection, 

compressibility, external turbulence, etc. 

Flows on surfaces with longitudinal curvature belong to the class of flows in fields of centrifugal body forces. 

Local and integral parameters of a curvilinear boundary layer undergo noticeable quantitative changes compared 

to a boundary layer on a flat plate even for tS**/Rw > 0.001, which is rather frequently encountered in technical 

facilities. In calculations curvature effects are taken into account both in the differential equations of motion and 

energy and in semiempirical relations for turbulent shear stresses and heat fluxes. 

The outstanding features of curvilinear flows distinguishing them from a flow near a flat plate are: 

1) the presence of a transverse pressure gradient; 

2) active and conservative action of centrifugal forces, formation of secondary flows in the form of GBrller 
vortices; 

3) specific features of transition from a laminar to a turbulent flow. 

This necessitates the development of separate methods for calculating heat transfer and hydrodynamics 

that take rather full account of the above effects. 

The problem of heat transfer and hydrodynamics near curvilinear surfaces has been under study for over 

sixty years. One of the first investigations was carried out by F. Wattendorf [ 1 ]; thereafter studies of various aspects 

of curvilinear flows were continued by H. GBrtler I21, F. Kreith [3 l, and I. Tani [41. In the last thirty years 

extensive theoretical and experimental advancements in this problem have been made by V. K. Shchukin [5 ], by 

B. P. Ustimenko [6 ], at the Institute of Technical Thermophysics of the National Academy of Sciences (ITTP 

NAS) of Ukraine [7 I, and at the Institute of Thermophysics of the Siberian Branch of the Russian Academy of 

Sciences (ITP SB RAS) [8 ]. Abroad, active investigations have been conducted by B. Mayle, R. So, C. Mellor, T. 

Symon, B. Moffat, and R. Goldstein (USA), P. Bradshaw and M. Gibson (England), and B. Shivaprasad and B. 

Pamaprial (India). A detailed list of publications in this field can be found in [7, 9, 10 l. 

This survey contains an analysis of the current state of the problem of heat transfer and hydrodynamics 

near surfaces with longitudinal curvature (convex and concave). In view of space restrictions it includes only the 

most important scientific results obtained by now, accepted views on the state of the problem are considered, and 
prospects for further developments in it are given. 
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2. S T A T E  O F  T H E  P R O B L E M  

2.1. Physical  Similar i ty  and Stabil i ty.  The  longitudinal  curvature of a surface favors an increase in the 

curvature of s t reamlines  and,  as a consequence,  leads to a change in the degree of fullness of the velocity and 

temperature  profiles. Earl ier  investigations [7-9] showed that a decrease  in the intensi ty  of turbulent  agi ta t ion 

decreases  the degree of fullness of the velocity profile near  a convex wall and increases the intensi ty of turbulent  

t ransfer  near  a concave wall (shear  flow). For a semiinfinite jet the curvature of the surface exer ts  a s imi lar  effect 

in the shear  portion of the velocity profile and influences only sl ightly the shape of the profile in its jet portion. 

H. Gi3rtler was the first to introduce a criterion of addi t ional  s imilar i ty  between the processes of heat  

t ransfer  and  hydrodynamics  near  a curvi l inear  surface. Subsequent ly  this d imensionless  quant i ty  was called the 

G6rt ler  number:  

1.5 

GiS= 7 - v (t) 

The first factor on the r igh t -hand  side of Eq. (1) is the o rd ina ry  Reynolds  number ,  and the second factor 

is the d imens ionless  curvature  of the bounda ry  layer.  For a shea r  flow the addi t ional  condit ion of s imi lar i ty  

(curvature parameter)  has the form 

cS/R w = idem.  (2) 

For a semiinfini te  jet near  a curvil inear wall this condit ion is writ ten as 

CSrn/R w = i d e m ,  (3) 

where c~ m is the dis tance from the wall to the maximum of the longitudinal  velocity component .  

Thus,  in the simplest  case of a shea r  flow in the absence of external  effects ( turbulence,  pressure  gradient ,  

etc.) the s imilar i ty  equations for heat  t ransfer  and friction are represented  as 

N u / N u 0  = fl  ( 3 /Rw ) ,  Cf /Cfo  = f2 (cS/Rw) �9 (4) 

For a semiinf ini te  jet one should use simplex (3) in the r ight -hand side of Eqs. (4). 

The  charac ter  of the action of centrifugal  forces on the s tructure of the flow depends  on the mutual  position 

of the vectors of the body force F and its gradient  OF~On. An active effect is observed in the case where these 

vectors a re  di rected opposi tely or are  perpendicular .  When the directions are  the same, the action of centrifugal  

forces is conservative.  In the first case turbulence is generated in the flow and secondary  flows appear ,  whereas  in 

the second  case  the oppos i t e  effect  is obse rved .  The  s e c o n d a r y  flows n e a r  c u r v i l i n e a r  s u r f a c e s  i n c l u d e  

T a y l o r - G i J r t l e r  vortices that are formed in a boundary  layer near  a concave surface [2, 4, 5, 71, as well as a pair  

vortex in a curvi l inear  channel .  

The Rayle igh method based on the concept of an ideal flow makes it possible to obtain two cri ter ia  of 

stabil i ty [5 I: 

d d 
d-r l p ( u r )  2 ] > 0 ,  drr I p u / r l > O .  (5) 

The first of these is based on the hypothesis  of conservation of velocity circulation I ' =  ur in random radial  movement  

of small volumes, and the second is based on the hypothesis  of conservation of the angular  velocity of rotat ion co 

= u/r .  

L. Prand t l  in 1929 was the first  to point out the formal analogy between the processes of heat  and  

momentum t ransfer  in a curvi l inear  flow and in a tempera ture-s t ra t i f ied  medium. Proceeding from this ana logy,  P. 

Bradshaw obta ined  a centrifugal analog of the Richardson number:  
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Fig. 1. Adaptation of the profile of the longitudinal velocity in transition from 

a plane to a convex surface (a, c50 = 0; b, 60 ~ 0): a) 1, 6"'/Rw = 0.001; 2, 

~*~ w -- 0.0054; b) 1, plane surface; 2, 6*~ = 0.006. 

Fig. 2. Adaptation of turbulent shear stresses in transition from a plane to a 

convex surface (6~*/Rw--0.096): i) plane surface; 6*~ 2) 0.01, 3) 0.0109, 

4) 0.0t19, 5) 0.0133; 6) ~ * =  0. 

F/dF (6) 
Ri = 2 r / - - ~ -  r , 

which is the ratio of turbulence generation by centrifugal forces to turbulence generation by the transverse gradient 

of the velocity in a shear flow. A flow in a field of centrifugal forces a stable when Ri > 0 and unstable when Ri 

< 0. Other expressions for the Richardson number are also used: 

Ri = 2S ,  Ri = 2S(1 + S ) ,  

where S = (u/Rw)/(Ou/Oy). Under nonisothermal conditions the Richardson number has the form 18 l 

R i = R i 0  [1 + ( u  1) ; (7) 
2(1 +~t,n - I )  ' 

where u = Tw/Tf is the temperature factor; n - I  is the exponent in the power-law profile of the velocity; Rio is the 

Richardson number for isothermal conditions. 

For a compressible flow the Richardson number is written as [10l 

R i = R i  o 1 + , 1 M2 + 0 . 2 5 M  Ri o , 

where M| is the Mach number of the external flow, and k is the specific-heat ratio. 

2.2. Adaptation and Relaxation of a Boundary Layer.  Adaptation is the t ransformation of a flow in 

transition from a plane to a curvilinear surface, whereas relaxation is the transformation in transition of a flow 
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from a curvi l inear  to a plane surface. In both cases there is a gradual  change in the turbulent ,  local, and  integral  

parameters  of the flow from the laws governing a p lane /curv i l inear  flow to the laws governing a cu rv i l inea r /p lane  

flow that te rminates  at a cer tain length of the surface. 

2.2.1. Adaptation of a Boundary Layer. In transit ion from a plane (1/Rw = 0) to a curvi l inear  ( l / R w  x: 0) 

surface three main effects appear :  

1) The dRw/dx-effect associa ted with an ins tantaneous  change in the surface curvature  radius.  

2) The  effect of a local longitudinal  pressure gradient  appear ing  due to a change in the t ransverse  pressure  

grad ien t  from a zero value near  a plane wall to a nonzero value on a curvil inear surface. 

3) The effect of the wall curvature proper  (the Rw-effect). 

The  first two factors have a noticeable effect over small dis tances  from the inlet and the third factor 

dominates  over large distances.  The  length of the curvi l inear  surface at which the action of the first two factors 

terminates  is called the adaptation length of the boundary  layer. Beyond this length there is the main portion of 

the flow. 

Investigations devoted to the physical  foundat ions of boundary  layer  adapta t ion  on a curvi l inear  surface 

are  very few in number.  At the present  time only a few works deal ing with a convex wall have been publ ished [11, 

12 ], whose results are cons idered  below. 

Adapta t ion  of a turbulent  boundary  layer  in t ransi t ion from a plane to a convex surface occurs d i f ferent ly  

for zero (60 = 0) and  nonzero (60 ~ 0) boundary  layer  thicknesses at the inlet (Fig. 1). In the first case the fullness 

of the velocity profile near  the surface increases insignif icantly and that in the external  portion of the profile 

decreases;  in the second case the fullness of the velocity profile over the convex-wall  length decreases  in conformity 

with the convex-curvature effect. Adapta t ion  of the velocity profile terminates  at the length corresponding to the 

condit ion [11 1 

** ** 0.92 
c~ a / R  w = 0.0035 + 1.69 (60 /Rw) , (8) 

where 6 a and 6 o are the momentum loss thickness at the end of the adapta t ion  length and at the beginning of 

the convex wall, respectively.  

Investigations of turbulent  character is t ics  over the adapta t ion  length show that the d is t r ibut ion  of turbulent  

friction over the boundary  layer  cross section at 60 = 0 and 60 r 0 differ substant ia l ly .  When 60 = 0, turbulent  

friction decreases  equidis tant ly  over the entire cross section of the boundary  layer  (lines 1 and 6, Fig. 2) in 

conformity with the convex-curvature  effect. When 60 r 0, af ter  the transi t ion of the flow from a plane to a convex 

surface, turbulent  friction r t first decreases  sharply  and then gradual ly  and asymptot ica l ly  approaches  the form 

character is t ic  for 60 = 0. The  rate of decrease  of r t increases with increase in the curvature factor 6~*/Rw, and at 

a ra ther  large value of the la t ter  pa ramete r  a region of negative friction appears  in the outer  part of the boundary  

layer  (Fig. 2). This  is expla ined by the fact that at large values of c~/Rw the term of turbulence generat ion in the 

balance equation for shear  s t resses  

Gr : ~ 2  c-~Y - 2 " ' 2 - -  V Rw 

acquires a negative value. Analysis  shows that the appearance  of negative values - u ' v '  in the outer  part of the 

boundary  layer  is caused not by the effect of significant curvature (as in terpreted by many research workers) ,  but 

ra ther  by transi t ion from a plane to a convex surface at large values of 6/Rw and the associa ted t ransformat ion of 

the turbulent  s tructure of the flow. From the physical  point of view the appearance  of a zone of negative turbulent  

friction testifies to t ransi t ion of energy of fluctuational motion to energy of averaged flow ("negative" turbulent  

viscosity).  This  also occurs in o ther  types of flows in a field of centrifugal  forces [6 I. 

The  fact of the appearance  of a zone with negative turbulent  shear  s t resses  was discovered in I13 I. Tha t  

work presents  deta i led exper imenta l  data  on turbulent  character is t ics  of heat  and momentum t ransfer  over the 

adapta t ion  length near  a convex wall. Measurements  showed that immedia te ly  after  the t ransi t ion to the convex 
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wall the turbulent  Prandt l  number  is equal to 1 .15-1 .2  near  its surface and decreases  to 0 . 5 - 0 . 6  in the external  

region. 

The  coefficients of friction and heat  t ransfer  over the adapta t ion  length near  a convex surface of constant  

curvature  at 6" ' /Rw = 0 - 0 . 0 1 3  are calculated from the equations 

** .** - 0 . 3 t  
( C f / C f 0 ) R  e = [1 + 103 ( 6 * * - 6 0  ) / R w l  , 

(9) 

(St/SI0)ReT* [1 + 103 (C3T* . . . .  0.33 = -- d ~ T o ) / R  w ] . 
(~o) 

Some results  of investigation of heat t ransfer  over the adapta t ion  length near  a convex surface are  also 

given in [13 1. In part icular,  it is shown there that in the adapta t ion  region St - R e T  " - I ,  which vir tual ly  corresponds 

to a laminar  regime. 

In calculations of a turbulent  boundary  layer  over the adapta t ion  length the changes in the flow curvature 

in transit ion from a plane to a convex surface are taken into account by using the effective curvature  radius  Ret. 

The equations suggested at the ITTP  NAS of Ukraine [ 11 ] and the ITP SB RAS [8 1 have the following form: 

Ref  I : g s  I [1 - exp ( -  x / R w ) l ,  ( 1 1 )  

Ref I = Rw t 11 - exp ( -  O. l x /Rw)] .  (12) 

2.2.2. Boundary Layer Relaxation. Problems of heat  t ransfer  and hydrodynamics  over the re laxat ion  length 

beyond a convex wall are  considered in detail  in [12, 13 ]. After t ransi t ion to a plane surface the flow recovers much 

more slowly than it undergoes adapta t ion  under  the influence of curvature.  Fas ter  recovery of turbulent  friction 

occurs in the outer  part  of the profile than near  the surface. A turbulent  heat  flux behaves different ly;  the t ransverse 

correlat ion v'T' along the re laxat ion length gradual ly  increases compared  to the convex wall and  even exceeds its 

value for a plane surface. This is followed by an asymptotic reverse approximat ion to the laws of a plane wall. The 

turbulent  Prandt l  number  over the relaxat ion length is character ized by considerable  scat ter  of exper imenta l  data;  

the value of Pr T is still somewhat lower at a considerable  distance from a convex wall than for a plane wall and 

amounts  to 0 . 5 - 0 . 6  in the region with y /6  = 0 .4 -1 .0 .  The mixing path length at the beginning of the relaxation 

length is 2 - 3  times smal ler  than on a plane surface I14 l. 

2.3. Shear  Flow. Main Section. Nongradient  Flow. The overwhelming majori ty of invest igat ions into the 

structure of a curvil inear turbulent  boundary  layer  over the main portion of a flow indicate that due to a decrease 

in turbulent  exchange the boundary  layer  thickness on a convex surface is smal ler  than on a plane surface under  

othe, 'wise equal condi t ions .  The  reverse is the case on a concave surface.  The  convent ional  b o u n d a r y  layer  

thicknesses di ~ 6 " ,  and 6 T change correspondingly (they are smal ler  on a concave wall and larger  on a convex 

wall compared to a plane one [7 l). 

In the case of a power-law approximat ion of the velocity profile u/uoo = (y /3)  l / n  the value of the exponent  

n is de te rmined  from the equations [7, 8]  

R w > O, n /n  0 = 1 - 4.34 (6**/Rw) 045 , (13) 

R w < 0 ,  n / n o =  1 + 2 . 6 9 ( 6 * ' / [ R w 1 )  ~ . (14) 

Then,  from these equations one can obtain expressions for the relative form paramete r  H = H / H  o. 

In a boundary  layer  near  a curvil inear surface a universal logarithmic law is mainta ined  for the velocity 

and tempera ture  profiles in a certain region near  the wall [9 l. The width of this region is reduced on a convex 

surface compared to a plane wall and  is enlarged on a concave surface. Convex curvature favors an increase in the 

relative thickness of the viscous sublayer  s~t and a decrease in the velocity co I and tempera ture  01 on its boundary .  
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Universal  velocity and tempera ture  profiles in the region of the logari thmic law are located higher  for a convex wall 

and  lower for a concave wall than for a plane surface. Equations for calculat ing velocity and tempera ture  profiles 

in the logari thmic region as well as over the ent ire  cross section with the a id  of the Coles profile are  given in [9 1. 

Longi tudinal  curvature  exer ts  a s t rong effect on the tu rbu len t  s t ruc ture  of a flow. Convex curvature  

decreases  normal s tresses,  while concave curvature increases them, and the degree of this change depends  on the 

ratio (5/Rw [9 ]. The correlat ion u'v' is decreased  on a convex surface and  increased on a concave one compared  to 

a plane surface. In the case of modera te ly  convex curvature the dis t r ibut ion of shear  s t ressess  over the bounda ry  

layer  cross section is descr ibed sat isfactor i ly  by the equation [7 ] 

r = r o ~ exp (q)~) / l  + U 1 + q)~ |  sh (r ~_L~] ,  (15) 

[ ( w h e r e U = 0 . 8  1 + e x p  1 + 0 . 2 E  exp(2~" ] ~ l ) ;  ( I : ) = A -  2 3 / R  w; E =  ( l O l  ~)0.Sexp(0.TA5 ] ~ ] ) ;  

(5 d P .  
A - rw dx is the pa ramete r  of the pressure  gradient .  

T u r b u l e n t  v iscosi ty ,  just  like o t h e r  tu rbulen t  charac te r i s t i c s ,  is increased  on a concave surface and 

decreased  on a convex one. The  influence of curvature on the thermal  turbulent  character is t ics  is s imilar  to its 

effect on the hydrodynamic  turbulent  parameters .  

The  curvature of the surface exer ts  a nonl inear  effect on surface friction and heat  t ransfer .  In the case of 

modera te ly  convex curvature  ((5/Rw = 0.01) the value of cf is 10-205/o smal ler  than on a plane surface,  and  at 

(5/Rw = 0.1 this decrease  is a l r eady  equal to 2 5 - 3 5 % .  Concave curvature  exer ts  an opposite effect on surface 

fr ict ion.  For  a convex surface  it was ob ta ined  that  c f - R e  ~176  a t  (5/Rw = 0.1 a n d  c f - R e  ~176176  a t  (5/Rw = 

0 . 0 1 - 0 . 0 1 5 ;  this is an in te rmedia te  case between a boundary  layer  on a plane wall (cr - R e  ~176176  and significant 

curvature.  

In a thermal  boundary  layer  St - R e ~  ~ 1 7 6  for modera te  curvature ((5/Rw = 0.01) and St - R e T  ~  for 

significant curvature,  indicat ing approx imate ly  the same effect of curvature  on friction and heat  t ransfer .  

To descr ibe  the effect of curvature  on surface friction and heat  t ransfer  various equations that  can be found 

in [7 ] have been suggested.  For  a convex surface under  quas i - i so thermal  condit ions the formulas suggested at the 

ITTP  NAS of Ukraine  correspond most fully to the nonlinear  charac te r  of the curvature effect: 

[(1 + 2900,3*'/Rw) -008 , 6**/R w = 0 ... 0.003 , 
tI/R (16) 

[0 .86 - 104 (5" ' /R w , (5**/R w = 0.003 ... 0.008 ; 

�9 , . - 0 1 2  , ,  (17) 
W R = ( I  + 103(5 /Rw)  ; (3 / R w = 0 . . . 0 . 0 1 1 .  

For  a concave surface under  nonisothermal  condit ions the most rel iable equation for WR has the form 18 ] 

qJR = 1 + 1 8 0 0 - -  1 + 
R w 2(1  + wn-')Jj 

where ~, = T w / T f  is the t empera tu re  factor; n is the exponent  in the equation for the velocity profile cu = f n. Here 

the combina t ion  in round  bracke t s  takes  account  of an add i t i ona l  effect caused  by cent r i fugal  t empera tu re  

strat if icat ion.  
T For the relative function of heat  t ransfer  qJR the Reynolds  analogy can be used in the form qJR = ~ T  [7 I. 

With al lowance for the difference of the Prandt l  number  from unity,  the following equations were obta ined  in [8 l: 

,{ W R = 1 
pr,2.. [ "t- a (5T / Rw 1 + 

2 (1 + ~n - I )  

(19) 
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where a = 2200 and b = - 0 . 1 1 5  for a convex wall and  a = 1800 and b =. 0.162 for a concave one. A comparison of 

Eqs. (16)-(19) with exper imenta l  da ta  ob ta ined  by M. Gibson,  R. So, B. Mayle, P. Bradshaw, T. Symon,  B. Moffat, 

and o ther  authors  is given in [7, 9 ]. 

2.4. Shear  Flow. Main Section. Effect of Various Factors .  Under  actual condi t ions,  flow and heat  t ransfer  

nea r  cu rv i l i nea r  su r f aces  a re  c o m p o u n d e d  by var ious  fac tors  such as p r e s su re  g r a d i e n t ,  compres s ib i l i t y ,  

nonisothermici ty ,  injection through a porous wall, etc. 

2.4.1. Longitudinal Pressure Gradient. The effect of positive and negative longi tudinal  pressure  gradients  

on local, turbulent ,  and integral  character is t ics  of a boundary  layer  near  convex and concave surfaces are  considered 

in detail  in [7, 9 ]. Of the main results  obta ined  we can mention here that:  

1) on a convex surface, when d P / d x  > 0, the critical pa ramete r  of flow separa t ion  is decreased  cons iderab ly  

due to a decrease in the boundary  layer  thickness;  

2) in the region of the joint effect of flow accelerat ion and convex curvature St -Re- ]  -*-/ ,  indicat ing the 

addi t iv i ty  of the effect of these factors. This is due to the fact that convex curvature smoothes  out turbulence in 

the outer  region of the boundary  layer,  while acceleration causes growth of the v iscous-sublayer  thickness;  

3) in calculations of friction and heat  t ransfer  the addit ivi ty principle is appl icable  if a correction is used 

that  character izes  the effect of curvature on the critical parameter  of the pressure g rad ien t  [7 ]. 

2.4.2. Compressibility. The effects of the compressibi l i ty  of a flow on convex and concave surfaces under  

condit ions of a pressure  gradient  were s tudied  in [15, 16 ]. For a i r  with M| < 4.0 the relat ive functions of curvature 

for convex and concave walls have the form 

R w > 0 ,  ~R = (1 + 2 2 0 0  6**/Rw) -016 , 

** 0,19 
R w < 0 ,  ~R = (1 + 18006 /Rw) , 

T ** - 0 , 1 4  
qJR = (1 + 22006 /Rw)  

T * * /  _ .0 .18  
tt/R = (1 + 18006 Rw) 

T and with an error  not exceeding 20% they agree with the equations for ~R and ~ R  for an incompress ible  flow. 

Thus,  the curvature effects are approximate ly  identical for subsonic and supersonic regimes of flow. 

When d P / d x  > 0, the boundary  layer  separat ion for convex and concave surfaces is de te rmined  by the 

equations 

R , A~ = (1 + 11506 /Rw)  . A0cr /AOcr  = (1 + l l S 0 6 ~  - I l  cr /A0cr  ** 023 

The equation corresponding to a convex wall differs substant ia l ly  from the results obta ined  for an incompressible  

flow, indicating a s t ronger  effect of surface curvature on boundary, layer  s tabi l i ty  at large Mach numbers .  

Equations for the relat ive funct ions of friction and heat  t ransfer  on a convex /concave  surface when 

d P / d x  <_ 0 are presented in [15, 16]. Analys is  of these equations shows that the principle of the addi t ivi ty  of 

curvature and pressure gradient  can also be used for a compressible  flow with account taken of the correction to 

the critical parameter  of flow separat ion for the curvature. This  result seems to be ex t remely  important ,  since it 

allows one to substant ia l ly  simplify the calculation procedure and use the algori thms of a plane turbulent  flow. 

2.4.3. External Turbulence. The influence of external  turbulence on heat  t ransfer  and hydrodynamics  near  

a curvi l inear  surface was invest igated only in [7, t31. The  main results  of these invest igat ions are: 

1) just as on a plane surface, the external  turbulence near  a convex wall increases the fullness of thc velocity 

profile and decreases the viscous-sublayer  thickness; 

2) the shear  s tresses are  increased over the entire thickness of the boundary  layer;  in the outer  part negative 

values of r t were discovered even at 6 / R  w = 0.03 due to the negative value of the generat ion term Gr in the balance 

equation for shear  stresses;  
.2 

3) the turbulent  character is t ics  T , v'T', and u'T' in the presence and absence of ex terna l  turbulence near  

a convex surface virtually coincide, indicat ing the dominance of the curvature effect over the effect of external  

turbulence;  

4) in the region with 6 / R w  <- 0.08 the values of ~Tu are corre la ted sat isfactori ly by the equations 
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q'/Tu = 1 + 0.021 Tu 1'75 at Tu = 0 ... 3 % ,  

qJTu = 0 ' 9 2 2 T u  ~ at Tu = 3 . . . 7  % .  

They  vir tual ly coincide with results  obta ined  on a flat plate, i.e., in the present  case too one can apply  the principle 

of addi t iv i ty  of curvature and external  turbulence.  

2.4.4.  I n j e c t i o n  through  a P o r o u s  Wall.  There  are  vir tual ly no works devoted to the effect of porous injection 

through a curvi l inear  wall on friction and heat  transfer.  Individual  results  of a theoretical  calculation on this problem 

are  presented  in [171. They  show that:  

1) convex curvature decreases  the critical pa ramete r  of injection. The value of this pa ramete r  on a convex 

surface is de te rmined  by the equation bcr -- b0r [ 1 + 1036**/Rw ] -052.  This  equation can also be used for de te rmin ing  

the thermal  critical pa ramete r  of injection; 

2) when using the above formula,  it is possible to employ relative functions of injection obta ined  for a plane 

surface. In this case the condit ion of addi t iv i ty  of injection and curvature is satisfied; 

3) in jec t ion  exe r t s  a ma jo r  inf luence  on viscous and  the rmal  sub l a ye r s ;  the  ac t ion  of cu rva tu re  is 

concent ra ted  mainly in the outer  part of the boundary  layer.  

2.4.5.  N o n i s o t h e r m i c i t y .  Centr i fugal  forces in a boundary  layer  favor s t rengthening  of turbulent  t ransfer  

near  a concave wall and  its weakening  near  a convex wall. The  corresponding effect in the case of differences 

between the tempera tures  of a flow and a wall is taken into account by the term in square brackets  in Eq. (19). It 

is r ecommended  that the "pure" effect of nonisothermici ty  be de te rmined  from relat ions for a plane wall [8 I. 

2.5. Semiinfinite Jet  and Gas  Screen.  The  hydrodynamics  of a semiinfinite jet  near  a curvi l inear  surface 

has specific features.  In this case near  the curvil inear surface one observes regions with an active and  conservative 

charac te r  of the action of centrifugal  forces. Near  a convex wall the zone of active effect is located in the shea r  

portion of the profile, while outs ide it there  is a zone of conservative effect. The reverse is the case for a concave 

wall. As a result ,  there  is a t ranspor t  of energy of turbulence from the region of active to the region of conservative 

effect, which is reflected in the dis t r ibut ion of turbulence,  flow, and heat  transfer.  

A few investigations of the heat  t ransfer  and hydrodynamics  of jet flows near  curvi l inear  surfaces were 

mainly carr ied  out at the ITTP  NAS of Ukraine [18, 191, as well as at the Universi ty  of Minnesota under  the 

leadersh ip  of Prof. R. Goldste in .  Due to the action of centrifugal  forces the fullness of the velocity profile in its 

shear  portion increases near  a concave surface and decreases  near  a convex one. The  equation for calculating the 

exponent  n in this region has the following form (Om/Rw < 0 .020)  118, 191: 

n / n  O = 1 + a ( 6 m / R w )  b , 
(20) 

where a -- - 1 . 7 ,  b = 0.31 for a convex wall; a = 2.69, b = 0.85 for a concave wall (no = 12). In the jet portion of 

the profile the curvature  hard ly  changes the dis tr ibut ion velocity and corresponds to a plane semiinfini te  jet. 

The  tempera ture  profile near  a concave surface is descr ibed sat isfactori ly by the power-law relat ion 0 = 

(y/c~T) 1 / m, where m = m 0 [ 1 + 4.4(~m/I  Rm I )0.56 ]. Some addi t ional  da ta  character iz ing the hydrodynamics  of flow 

near  convex and concave surfaces can be found in 118, 19 I. 

For calculating local heat  t ransfer  near  convex and concave walls the following equation is used [18, 19 ]: 

(Nur /Nu0)Re  ~ = 1 + a [ 6 m / R  w - b l  c , (21) 

where a = 4.149, b = 0.002, c = 0.65 for a concave wall; a = - 2 3 . 6 9 ,  b = 0.0005, c = 0.81 for a convex wall. 

The  longitudinal  curvature of a surface influences subs tant ia l ly  the e f f i c i ency  o f  a gas  screen.  Convex 

curvature  stabi l izes a flow and thus increases the efficiency of a gas screen compared to a plane surface; concave 

curvature  exer ts  the opposi te  effect. 

The  theoretical  and exper imenta l  investigations of the efficiency of a gas screen near  curvi l inear  surfaces 

are few in number.  Individual  aspects  of this problem were invest igated by B. Mayle, A. V. Shchukin,  and  M. Blair, 
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at the I T T P  NAS of Ukra ine  [7 1, and  at  the ITP SB RAS [8 1. In [7 ] it was subs tan t i a ted  exper imenta l ly  that the 

efficiency of a gas screen in the case of slit injection in front of a convex  surface is de t e rmined  by the equation for 

a plane surface with al lowance for the curvature factor: 

I r/ = 1 + 0.24 x Res0.2s ~YR , , (22) 
m s  

where m is the injection parameter ;  the quant i ty  WR = (c f /qO)Re '*  is de termined from Eqs. (16) and (17). Allowance 

for the influence of flow accelerat ion and  external  turbulence on the efficiency of a gas screen is made  by using 

correct ions given in [7 ]. It is also shown in that work that the difference in the efficiency of a gas screen for discrete 

injection and continuous injection through a slit corresponds to the laws of a flat plate. 

There  are  no rel iable equahons in the l i terature for calculating the efficiency of a gas screen near  a concave 

surface. Taking into considerat ion results  obtained by A. V. Shchukin (Kazan '  Aviation Ins t i tu te) ,  as  well as results 

obta ined at the ITTP NAS of Ukraine,  it is possible to recommend using Eq. (22) with al lowance for Eqs. (18) and 

(19). 

2.6. Semiempir ica l  Hypotheses .  Various models are  used to calculate turbulent  shear  s t resses  and heat 

fluxes over the cross section of a boundary  layer. According to the mixing path theory  for curvi l inear  flows, the 

value of r~ is de te rmined  from the equation 

_ ( 2 3 )  

The plus sign corresponds  to the hypothesis  of conservation of velocity circulation, and  the minus sign corresponds 

to the hypothesis  of conservation of the angular  velocity of rotation. In this case the mixing path length I is a 

function of the curvature of the s t reamlines .  

P. Bradshaw sugges ted  the following equation for de termining the relative mixing path length near  a 

curvil inear surface: 

l / l  0 = (1 + fl Ri) ~FN , (24) 

where N is a constant .  Its drawback is an instantaneous change in l with a jumpwise change  in the surface curvature. 

Allowance for this factor in theoret ical  models is made by using an effective curvature  radius  de te rmined  by 

formulas ( 11 ) and (12). 

Basic equations suggested for calculating the ratio l / l o  are given in [7 ]. In a number  of cases the difference 

between them at tains  2 0 0 - 3 0 0 % .  For a shear  flow near  a convex surface relat ions that agree  sat isfactori ly with 

the majori ty  of the data  published [7 ] are  given below: 

N = 1 , fl = 10 [l + 8.103 (c~**/R w - 10 -3) ] - 0 . 4 6  . 

N =  - 1,  = 2 -  2 .96 th  [0. (10 ~ / R  w -  1) ] ,  

10(1 + 12306 /Rw) - ~  

The first of the equations for N = - I  is sat isfied in the region of c~**/Rw = 0 . 0 0 1 - 0 . 0 0 3  and the second at 

c~ / Rw = 0 .003-0 .008 .  

For condit ions of significant curvature near  a convex surface with a zone of negative friction in the outer  

part of the boundary  layer  A. A. Khalatov, E. E. lkonnikova, and A. V. Kuz 'min sugges ted  the following formula 

[11, 17]: 

l / l  o = exp ( -  30 Ri) - 3.5 Ri 2 + 1.2 Ri + 0 .3 .  (25) 

702 



In [8 !, on the basis of a theoretical  approach,  equations are  suggested for convex and concave surfaces that  

also agree well with exper imenta l  data:  

I I 0) 2 1.0�84 R w > 0 ,  l / l  0 = 1 + Y Ri (26) 

E o.25 n w < 0 ,  1/10= 1 -  10 Ri (27) 

V. Sovershennyi  [7 ] suggested taking account of curvature  effects in the formula for the l inear  dependence  

of the mixing path length near  a wall [7 ] (l = ky): 

R w > 0 ,  k / k  O= 1 - 4 . 9 2 5 6 / R  w; R w < O ,  k / k  O= 1 - 2 3 . 0 7 5 ~ / R  w. 

However,  such an approach  seems to be insufficiently accurate  for calculating processes of heat  t ransfer  and 

hydrodynamics .  

In [16] an a t t empt  was made  to take account of the effect of curvature  on tu rbu len t  viscosity in a 

compress ible  flow by using the equation/~t  = g~ where e8 -- 1 - flRi, with the Ri number  being def ined by an 

expression given in Sec. 2.1. The  pa ramete r  fl depends  on the specif ic-heat  ratio k and the Mach number  M| [15, 

16 ]. The  effect of curvature  on the turbulent  Prandt l  number  was investigated by R. So [71. It was shown that it 

was insignificant for the main section of the flow. In especial ly accurate  calculations al lowance for the effect of 

curvature on the Prandt l  number  PrT can be made by using an equation suggested in [7 ]. 

In recent years  various authors  have ex tended  the k - e - m o d e l  of turbulence to the case of curvi l inear  flows. 

Allowance for the effect of the curvature of the s t reamlines  on turbulent  t ransfer  of momentum is made  in the 

differential  equation for e by means  of a correction introduced into the generat ion term using the equation CI = 

1.44 + Ri. The  coefficient Cl is increased in the region of suppression of turbulence (Ri > 0) and  decreased  in the 

zone of its intensif icat ion (Ri < 0). 

In semiinfini te  jets,  in the region of shear  flow before the point where rt = 0 turbulent  shear  s t resses  are  

de te rmined  by Eq. (23), where l -- 10(I + a r t )  ~. For a convex wall a = 8.3 and b = - 1; for a concave wall a = - 3 . 8 5  

and b = 0.75 [18, 19]. In the jet portion of the profile the de terminat ion  of turbulent  friction is based on the 

hypothesis  of constancy of the mixing path length r t =px(b  - ~rn)(Um - uO.5)Ou/Oy. Here b is the halfwidth of the 

jet [7 ], and u0.5 is the velocity at the point y = b. For a curvi l inear  boundary  layer  the turbulence constant  x = 

xo[ l  + c(6rn/Rw)gl; in this case c = 13.8 and g =  0.8 near  a convex wall and  c = - 9 . 7 5  and g =  0.78 near  a concave 

wall [18, 19 ]. Cer ta in  addi t iona l  da ta  that character ize  normal turbulent  s tresses,  the coordinate  of the point of 

zero turbulent  friction, specific fea tures  of diffusion of turbulence  from the region of active to the region of 

conservative effect Of centr ifugal  forces, and other  data  are presented  in I18, 19 1. 

2.7. Centrifugal  Instabil i ty.  One of the specific features of the hydrodynamics  near  curvi l inear  surfaces is 

the appearance  of G~rt ler  longi tudinal  vortices in the boundary  layer  near  a concave surface due to d i s turbance  of 

the balance between the centr ifugal  force and the t ransverse pressure  gradient .  Such vortices were first discovered 

theoret ical ly by H. G6r t le r  [2 ] in a laminar  regime of flow and by 1. Tani  in a turbulent  flow 14 I. Although a long 

period of time has passed since their  discovery,  some problems of heat  transfer,  surface friction, and  formation and 

deve lopment  of G~r t le r  vort ices have been invest igated insuff ic ient ly  as yet. The  basic diff iculty is accurate  

calculation of the coefficients of heat  t ransfer  and friction across a concave wall due to their  wavy variation.  

In the last f i f t e e n - t w e n t y  years  various aspects of heat  t ransfer  and hydrodynamics  associa ted with GiSrtler 

vortices have been invest igated in detail  in the USA, Japan,  and  Germany .  In Ukraine  s imilar  invest igat ions have 

been carried out at the Inst i tutes  of Hydrodynamics  and Technical  Thermophys ics  of the Nat ional  Academy of 

Sciences. In recent years ,  at the ITTP  NAS of Ukraine l inear  and  nonl inear  approaches  to analys is  of centr ifugal  

instabi l i ty  have been worked out that are  based on development  of the Taylor  method [20 ]. 
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In [201, in the case of a l inear  approximat ion with al lowance for all the terms in the equation of motion, 

ra ther  accurate relat ions were obta ined  for the critical G~rt ler  number  that de te rmines  the appearance  of vortices 

in a laminar  flow: 

G/Set = 22.97 at 6 / R  w = 0 ... 0.02 ,  

G~cr = 22.76 ( 6 / R w )  ~ 1 7 6  at 6 / R  w = 0.02 ... 0.1 . 

A comparison of these equations with ear l ier  published theoretical  calculations and exper iments  of GiArtler, 

Meksin,  Aihara ,  Kahavita,  Smith,  et al. that was carr ied out in [21 ] shows that the approach developed in [20] 

provides a good descript ion of the majori ty  of the exper imental  data  (GiJrtler obta ined  the value GiAcr = 16) and 

takes into account the slight change in the critical G~Srtler number  as a function of the curvature  6 / R w .  Satisfactory 

agreement  between the l inear  theory and exper iments  was also obta ined for the wave number  (the d is tance  between 

the axes of the vortices). 

The l inear  approach makes it possible to predict on the whole a harmonic change  in the coefficients of 

friction and heat t ransfer  across a concave surface. However, with such an approach,  on the average a value of the 

surface friction equal to the friction under  condit ions of nonvortical flow is maintained.  This  drawback is e l iminated  

by allowance for the quadrat ic  terms in the dis turbing ampli tudes.  This  nonl inear  approach was developed in [20 ]. 

Use of the nonl inear  approach makes it possible to obtain more accurate data  on heat  t ransfe r  and  surface friction. 

Calculat ions carr ied out in [20] show that the effect of vortices on surface friction and  heat  t ransfer  in a laminar  

flow is very appreciable  and may at tain 8 0 - 9 0 % .  This effect depends  little on the surface curvature  6 / R w .  

Investigations devoted to Gi:irtler vortices in a turbulent  flow are very scarce. Suffice it to say that  up to 

now there are no rel iable da ta  on the value of the critical Gi~rtler number  corresponding to the appearance  of vortices 

in a turbulent  boundary  layer.  In [21 ] an equation for the critical GiArtler number  is given that  is obta ined  with 

allowance for the effect of the curvature of the s t reamlines  on the turbulent  viscosity. In the region with 6 / R  w = 

0 . 0 1 - 0 . 0 2  it has the form 

Gocr = 3843 - 68520 6 / R  w . 

The value of G~Scr decreases  with an increase in 3 / R w ,  just like the wave number  [21 ]. 

Results of investigation of the effect of a longitudinal  pressure gradient ,  injection and suction from the 

surface, and external  turbulence of the flow on heat t ransfer ,  surface friction, the wave number ,  and the profiles 

of the dis turbing ampl i tudes  are  presented in works that were carr ied out in recent years  at the ITTP  NAS of 

Ukraine  [22-26 I. 

2.8. Calculat ion Methods.  Heat  t ransfer  and hydrodynamics  near  curvi l inear  surfaces are  calculated by 

methods based on the solution of differential  and integral  equations of motion and energy.  In the different ial  

equations,  the curvature of the s t reamlines  leads to the appearance  of the factor (1 + y / R w ) ,  which character izes  

the curvature radius  of the s t reamlines ,  the addi t ional  terms 2 r / p R w  and q / p c o R  w in the equation of motion for 

the longitudinal  coordinate  and the energy equation, and an addi t ional  relation that character izes  the t ransverse  

pressure  gradient  Op/Oy .  Moreover, the curvature effects are reflected in the express ion for r,  as well as in the 

semiempirical  relat ions for turbulent  friction and heat  flux 17, 9, 10 ], In the integral  equation of motion terms 

appear  that character ize the pulsational  components across the boundary  layer and the bounda ry  layer  curvature;  

the integral  expressions for the thermal boundary  layer  for curvil inear and plane flows agree with each other  [9, 

10]. 

Among the popular  and ra ther  simple methods of calculation are those based on L. P rand t l ' s  semiempir ical  

theory.  Most frequently they are based on well-verified algori thms constructed for a plane boundary  layer  using 

semiempirical  relat ions that contain the effects of curvature (Eq. (15), Sec. 2.6). The  specific features  associa ted 

with the change in the surface curvature radius (Eqs. (11) and (12)) as well as the effects of negative turbulent  

friction in the outer  part of the boundary  layer  (Eq. (25)) are  taken into account over the adapta t ion  and re laxat ion 

lengths. In this case the results  of calculation of turbulent  flow and heat t ransfer  are  ra ther  accurate  18, 1 I, 15-19] 
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and reliable for practical application. Approximately the same approach to the calculation of curvilinear flows was 

developed in foreign works in which satisfactory results that take into consideration the effects of boundary layer 

adaptation and relaxation were obtained [12-14 ]. 

Recent investigations showed that in complex flows near curvilinear surfaces the principle of additivity of 

individual factors is satisfied with an accuracy sufficient for practical applications. This principle was developed by 

A. I. Leontiev and S. S. Kutateladze for plane flows. Using this approach, integral methods can be employed for 

calculating heat transfer and surface friction in gradient flows [7, 9, 10] in the case of injection into a boundary 

layer [17], as well as under conditions of nonisothermicity [8] and compressibility [15, 16]. Allowance for 

curvature is made in corresponding parameters of equations for the laws of friction and heat transfer, such as the 

critical parameters of flow separation and injection. This allows one to employ the algorithms used for calculations 

of plane flows (Secs. 2.4 and 2.5). 

Methods based on complicated versions of the semiempirical theory of turbulence have been [6, 19] 

successfully employed for calculating curvilinear flows. In particular, allowance for the curvature effect in the 

generation term of the equation for e (in the k-e-model) gives a noticeable improvement in calculations of the heat 

transfer and hydrodynamics of semiinfinite jets [19 ]. 

In [26 ] an approach to calculation of heat transfer and friction near curvilinear surfaces has been developed 

that is based on the analogy to internal flow with flow twisting. In this approach the internal twisted flow in a tube 

corresponds to a flow past a "concave" wall, whereas the annular-channel flow corresponds to a flow past a "convex" 

wall (inner tube) and a "concave" wall (outer tube). In this approach, gradient flows correspond to a twisted flow 

in annular converging or diverging channels. In [26 ] it is shown that in this approach the geometric radius of the 

surface "curvature" of the helical line in a tube (of a "concave" surface) R* -- R(I + tan 2 ~,)/tan 2 ~o differs from the 

hydrodynamic radius R* = R tan ~o/(1 + tan 2 ~,)0 S. Here R* and R are the radii of the "concave" wall and the tube; 

tan ~o = Vr V~o and Vx are the rotational and axial components of the twisted flow near the tube surface. 

Use of the effective radius of a concave surface R* makes it possible to perform calculations of friction and 

heat transfer using relations for an internal twisted flow in a tube [27, 28 1. 

3. T O P I C A L  P R O B L E M S  

Analysis of the investigations carried out shows that problems of heat transfer and hydrodynamics under 

various conditions are considered in a great number of works. Nevertheless, many of the problems require further 

investigation. These are: 

1) extension and deepening of modern concepts of the physical structure and laws of heat transfer in shear 

flows, semiinfinite jets, and gas screens under complicated boundary conditions (nonisothermicity, pressure 

gradient, injection and suction, external turbulence, etc.); 

2) investigation of the laws governing adaptation and relaxation of the boundary, layer under various bound- 

ary conditions; 

3) investigation of the effect of two-phase flows (gas-solid particles, gas-liquid particles) on heat transfer 

and hydrodynamics; 

4) investigation of the effect of significant curvature (6/Rw > 0.1) on local, turbulent, and integral char- 

acteristics of the boundary layer; 

5) investigation of the laws governing transition from a laminar to a turbulent flow under complicated 

boundary conditions; further study of the physical structure of G~rtler centrifugal instability; 

6) development of methods for calculating heat transfer and hydrodynamics toward complicated 

semiempirical theories of turbulence, establishment of the relation with other types of flows in fields of centrifugal 

forces. 

In conclusion the author wishes to express his gratitude to his colleagues in the Department of High- 

Temperature Thermogasdynamics at the Institute of Technical Thermophysics of the National Academy of Sciences 

of Ukraine A. A. Avramenko (Cand. of Tech. Sci.), I. V. Shevchuk (Cand. of Tech. Sci.), I. A. Izgoreva (Cand. of 
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Tech. Sci.), A. V. Kuz'min (Cand. of Tech. Sci.), T. A. Zheleznaya (Cand. of Tech. Sci.), E. I~. lkonnikova 

(Postgraduate Student), and S. G. Kobzar' (Postgraduate Student), who took an active part in advancements in 

problems of heat transfer and hydrodynamics near curvilinear surfaces and whose results are used in the present 

review. 

N O T A T I O N  

cf, coefficient of friction; Gi5, GiArtler number; H = t5"/c5"*, form-parameter; k = Cp/C v, specific-heat ratio; 

m, n, exponents for the temperature and velocity profiles; M, Mach number; Nu, Nusselt number; P, static 

pressure; Re, Reynolds number; Rw, surface curvature radius (Rw > 0, convex surface; Rw < 0, concave surface); 

Ri, Richardson number, s, width of the slit of the gas screen; T, temperature; u, v, w, velocity components; up, 

velocity of potential flow; Upw, projection of the potential-flow velocity on the wall; x, y, z, rectangular coordinates; 

,3, thickness of the boundary layer; di*, di*', displacement and momentum loss thicknesses; 6-]-*, energy loss 

thickness; T, f r ic t ion;  r t, tu rbulen t  friction; /z t, turbulent  viscosity; v = /~/p, kinemat ic  viscosity; 0 =, 

T - -  T w / T  f - T w ,  dimensionless temperature; co = u/u| ~ = y/6;  Ao = 6 ( d P / d x ) / t w  o, parameter of the pressure 

gradient; r/, efficiency of the gas screen; ~R = (cf/Cfo)Re**; ~T = (St/St0)Re.].. Subscripts: a, adaptation, m, 
maximum value; O, entrance, flat plate; s, slit; f, flow; w, surface; 1, viscous sublayer; oo, condition outside the 

boundary layer. 
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