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HEAT TRANSFER AND HYDRODYNAMICS NEAR
CURVILINEAR SURFACES

A. A. Khalatov UDC 532.536

This paper surveys the state-of-the-art in the field of heat transfer and hydrodynamics near surfaces with
longitudinal curvature.

1. INTRODUCTION

Flow and heat transfer on surfaces with longitudinal curvature are very common in various areas of
engineering. The flows are induced as a result of special design features of technical facilities or are created specially
to intensify heat and mass transfer or improve thermogasdynamic processes. Flows near curvilinear surfaces are
most frequently encountered in aviation, rocket technology, heat engineering, power-plant engineering,
shipbuilding, and internal combustion engines. The effects of longitudinal curvature in technical facilities are
usually combined with the action of other factors, such as the longitudinal pressure gradient, injection,
compressibility, external turbulence, etc.

Flows on surfaces with longitudinal curvature belong to the class of flows in fields of centrifugal body forces.
Local and integral parameters of a curvilinear boundary layer undergo noticeable quantitative changes compared
to a boundary layer on a flat plate even for 6**/R,, > 0.001, which is rather frequently encountered in technical
facilities. In calculations curvature effects are taken into account both in the differential equations of motion and
energy and in semiempirical relations for turbulent shear stresses and heat fluxes.

The outstanding features of curvilinear flows distinguishing them from a flow near a flat plate are:

1) the presence of a transverse pressure gradient;

2) active and conservative action of centrifugal forces, formation of secondary flows in the form of Gortler
vortices;

3) specific features of transition from a laminar to a turbulent flow.

This necessitates the development of separate methods for calculating heat transfer and hydrodynamics
that take rather full account of the above effects.

The problem of heat transfer and hydrodynamics near curvilinear surfaces has been under study for over
sixty years. One of the first investigations was carried out by F. Wattendorf [1 |; thereafter studies of various aspects
of curvilinear flows were continued by H. Gortler {2], F. Kreith [3], and [. Tani [4]. In the last thirty years
extensive theoretical and experimental advancements in this problem have been made by V. K. Shchukin (5], by
B. P. Ustimenko [6], at the Institute of Technical Thermophysics of the National Academy of Sciences (ITTP
NAS) of Ukraine [7], and at the Institute of Thermophysics of the Siberian Branch of the Russian Academy of
Sciences (ITP SB RAS) [8]. Abroad, active investigations have been conducted by B. Mayle, R. So, C. Mellor, T.
Symon, B. Moffat, and R. Goldstein (USA), P. Bradshaw and M. Gibson (England), and B. Shivaprasad and B.
Pamaprial (India). A detailed list of publications in this field can be found in (7, 9, 10).

This survey contains an analysis of the current state of the problem of heat transfer and hydrodynamics
near surfaces with longitudinal curvature (convex and concave). In view of space restrictions it includes only the

most important scientific results obtained by now, accepted views on the state of the problem are considered, and
prospects for further developments in it are given.
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2. STATE OF THE PROBLEM

2.1. Physical Similarity and Stability. The longitudinal curvature of a surface favors an increase in the
curvature of streamlines and, as a consequence, leads to a change in the degree of fullness of the velocity and
temperature profiles. Earlier investigations [7-9 ] showed that a decrease in the intensity of turbulent agitation
decreases the degree of fullness of the velocity profile near a convex wall and increases the intensity of turbulent
transfer near a concave wall (shear flow). For a semiinfinite jet the curvature of the surface exerts a similar effect
in the shear portion of the velocity profile and influences only slightly the shape of the profile in its jet portion.

H. Gortler was the first to introduce a criterion of additional similarity between the processes of heat
transfer and hydrodynamics near a curvilinear surface. Subsequently this dimensionless quantity was called the
Gortler number:
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The first factor on the right-hand side of Eq. (1) is the ordinary Reynolds number, and the second factor
is the dimensionless curvature of the boundary layer. For a shear flow the additional condition of similarity
(curvature parameter) has the form

8/R, = idem. (2)
For a semiinfinite jet near a curvilinear wall this condition is written as
3,/ R, = idem 3

where d,, is the distance from the wall to the maximum of the longitudinal velocity component.
Thus, in the simplest case of a shear flow in the absence of external effects (turbulence, pressure gradient,
etc.) the similarity equations for heat transfer and friction are represented as

Nu/Nug =/, (8/R,), Ci/Cyy=f, (3/R). (4)

For a semiinfinite jet one should use simplex (3) in the right-hand side of Egs. (4).

The character of the action of centrifugal forces on the structure of the flow depends on the mutual position
of the vectors of the body force F and its gradient 9dF/dn. An active effect is observed in the case where these
vectors are directed oppositely or are perpendicular. When the directions are the same, the action of centrifugal
forces is conservative. In the first case turbulence is generated in the flow and secondary flows appear, whereas in
the second case the opposite effect is observed. The secondary flows near curvilinear surfaces include
Taylor—Gortler vortices that are formed in a boundary layer near a concave surface {2, 4, §, 71, as well as a pair
vortex in a curvilinear channel.

The Rayleigh method based on the concept of an idcal flow makes it possible to obtain two criteria of
stability [S]:

Lo w150, L jpurr1>o0. (5)

The first of these is based on the hypothesis of conservation of velocity circulation /"= ur in random radial movement
of small volumes, and the second is based on the hypothesis of conservation of the angular velocity of rotation w
=u/r.

L. Prandtl in 1929 was the first to point out the formal analogy between the processes of heat and
momentum transfer in a curvilinear flow and in a temperature-stratified medium. Proceeding from this analogy, P.
Bradshaw obtained a centrifugal analog of the Richardson number:
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Fig. 1. Adaptation of the profile of the longitudinal velocity in transition from
a plane to a convex surface (a, 89 = 0; b, 89 = 0): a) 1, 8**/R,, = 0.001; 2,
8" /R, = 0.0054; b) 1, plane surface; 2, 8**/R,, = 0.006.

Fig. 2. Adaptation of turbulent shear stresses in transition from a plane to a
convex surface (83 / Ry =0.096): 1) plane surface; 8**/ R, 2) 0.01, 3) 0.0109,
4) 0.0119, 5) 0.0133; 6) 45" = 0.

Ri=2L /or 6)
r ar

which is the ratio of turbulence generation by centrifugal forces to turbulence generation by the transverse gradient

of the velocity in a shear flow. A flow in a field of centrifugal forces a stable when Ri > 0 and unstable when Ri

< 0. Other expressions for the Richardson number are also used:

Ri=12S, Ri=25(1 +8),
where § = (u/Ry)/(du/3y). Under nonisothermal conditions the Richardson number has the form (8]

Ri=Ri0{l+~—(L—L——’-l }

;
2(1 +yn ) g

where y = T,/ Ty is the temperature factor; n—! is the exponent in the power-law profile of the velocity; Rig is the
Richardson number for isothermal conditions.

For a compressible flow the Richardson number is written as [10]
. . k-1 2 2 2
Rl = Rlo {l + _2— h‘im + 0.25 Nim Rio] N
where M, is the Mach number of the external flow, and & is the specific-heat ratio.
2.2. Adaptation and Relaxation of a Boundary Layer. Adaptation is the transformation of a flow in
transition from a plane to a curvilinear surface, whereas relaxation is the transformation in transition of a flow
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from a curvilinear to a plane surface. In both cases there is a gradual change in the turbulent, local, and integral
parameters of the flow from the laws governing a plane/curvilinear flow to the laws governing a curvilinear/plane
flow that terminates at a certain length of the surface.

2.2.1. Adaptation of a Boundary Layer. In transition from a plane (1/R,, = 0) to a curvilinear (1/Ry, = 0)
surface three main effects appear:

1) The dRy/dx-effect associated with an instantaneous change in the surface curvature radius.

2) The effect of a local longitudinal pressure gradient appearing due to a change in the transverse pressure
gradient from a zero value near a plane wall to a nonzero value on a curvilinear surface.

3) The effect of the wall curvature proper (the R-effect).

The first two factors have a noticeable effect over small distances from the inlet and the third factor
dominates over large distances. The length of the curvilinear surface at which the action of the first two factors
terminates is called the adaptation length of the boundary layer. Beyond this length there is the main portion of
the flow.

Investigations devoted to the physical foundations of boundary layer adaptation on a curvilinear surface
are very few in number. At the present time only a few works dealing with a convex wall have been published [11,
12 ], whose results are considered below.

Adaptation of a turbulent boundary layer in transition from a plane to a convex surface occurs differently
for zero (69 = 0) and nonzero (g # 0) boundary layer thicknesses at the inlet (Fig. 1). In the first case the fullness
of the velocity profile near the surface increases insignificantly and that in the external portion of the profile
decreases; in the second case the fuliness of the velocity profile over the convex-wall length decreases in conformity
with the convex-curvature effect. Adaptation of the velocity profile terminates at the length corresponding to the
condition [11]

8:°/R,, = 0.0035 + 1.69 85"/ R,)**2, ®)

where 8, and d;" are the momentum loss thickness at the end of the adaptation length and at the beginning of
the convex wall, respectively.

Investigations of turbulent characteristics over the adaptation length show that the distribution of turbulent
friction over the boundary layer cross section at 8g = 0 and d¢ = O differ substantially. When &g = 0, turbulent
friction decreases equidistantly over the entire cross section of the boundary layer (lines | and 6, Fig. 2) in
conformity with the convex-curvature effect. When dg = 0, after the transition of the flow from a plane to a convex
surface, turbulent friction 7, first decreases sharply and then gradually and asymptotically approaches the form
characteristic for 8¢ = 0. The rate of decrease of 7, increases with increase in the curvature factor 89"/ Ry, and at
a rather large value of the latter parameter a region of negative friction appears in the outer part of the boundary
layer (Fig. 2). This is explained by the fact that at large values of 4/ R, the term of turbulence generation in the
balance equation for shear stresses

G, = v'z%%— (Zuvz— v'2) Eu_

w

acquires a negative value. Analysis shows that the appearance of negative values —u'v' in the outer part of the
boundary layer is caused not by the effect of significant curvature (as interpreted by many research workers), but
rather by transition from a plane to a convex surface at large values of 4/R,, and the associated transformation of
the turbulent structure of the flow. From the physical point of view the appearance of a zone of negative turbulent
friction testifies to transition of energy of fluctuational motion to energy of averaged flow ("negative” turbulent
viscosity). This also occurs in other types of flows in a field of centrifugal forces (6 ].

The fact of the appearance of a zone with negative turbulent shear stresses was discovered in [13]. That
work presents detailed experimental data on turbulent characteristics of heat and momentum transfer over the
adaptation length near a convex wall. Measurements showed that immediately after the transition to the convex

697



wall the turbulent Prandtl number is equal to 1.15—1.2 near its surface and decreases to 0.5—0.6 in the external
region.

The coefficients of friction and heat transfer over the adaptation length near a convex surface of constant
curvature at 3**/R,, = 0—0.013 are calculated from the equations

(Cr/Crodpe™™ = 1+ 107 (8™ = 85"y /R, 1777, &
(St/Stohget = [1 + 10° 37 = 87p)/R, 177 (10)

Some results of investigation of heat transfer over the adaptation length near a convex surface are also
given in [13]. In particular, it is shown there that in the adaptation region St ~Re}°‘l, which virtually corresponds
to a laminar regime.

In calculations of a turbulent boundary layer over the adaptation length the changes in the flow curvature
in transition from a plane to a convex surface are taken into account by using the effective curvature radius Rey.
The equations suggested at the ITTP NAS of Ukraine {11} and the ITP SB RAS [8] have the following form:

_I_

R; =R, [1 - exp (- x/R,)1, (11)

Ry =R, 1 —exp(=0.1x/R,)]. (12)

2.2.2. Boundary Layer Relaxation. Problems of heat transfer and hydrodynamics over the relaxation length
beyond a convex wall are considered in detail in {12, 13 ). After transition to a plane surface the flow recovers much
more slowly than it undergoes adaptation under the influence of curvature. Faster recovery of turbulent friction
occurs in the outer part of the profile than near the surface. A turbulent heat flux behaves differently; the transverse
correlation v'T along the relaxation length gradually increases compared to the convex wall and even exceeds its
value for a plane surface. This is followed by an asymptotic reverse approximation to the laws of a plane wall. The
turbulent Prandtl number over the relaxation length is characterized by considerable scatter of experimental data;
the value of Pry is still somewhat lower at a considerable distance from a convex wall than for a plane wall and
amounts to 0.5~0.6 in the region with y/é = 0.4—1.0. The mixing path length at the beginning of the relaxation
length is 2—3 times smaller than on a plane surface [14].

2.3. Shear Flow. Main Section. Nongradient Flow. The overwhelming majority of investigations into the
structure of a curvilinear turbulent boundary layer over the main portion of a flow indicate that due to a decrease
in turbulent exchange the boundary layer thickness on a convex surface is smaller than on a plane surface under
otherwise equal conditions. The reverse is the case on a concave surface. The conventional boundary layer
thicknesses 8°, 8**, and &7 change correspondingly (they are smailer on a concave wall and larger on a convex
wall compared to a plane one [7].

In the case of a power-law approximation of the velocity profile u/ uq = (y/(S)l " the value of the exponent
n is determined from the equations [7, 8]

R,>0, n/ng=1-4340"/R)>*, (13)

R,<0, n/my=1+269@"/|R,)"%. (14)

Then, from these cquations one can obtain expressions for the relative form parameter H = H/Hy.

In a boundary layer near a curvilinear surface a universal logarithmic law is maintained for the velocity
and temperature profiles in a certain region near the wall [9]. The width of this region is reduced on a convex
surface compared to a plane wall and is enlarged on a concave surface. Convex curvature favors an increase in the
relative thickness of the viscous sublayer £ and a decrease in the velocity w; and temperature 6, on its boundary.
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Universal velocity and temperature profiles in the region of the logarithmic law are located higher for a convex wall
and lower for a concave wall than for a plane surface. Equations for calculating velocity and temperature profiles
in the logarithmic region as well as over the entire cross section with the aid of the Coles profile are given in [9].

Longitudinal curvature exerts a strong effect on the turbulent structure of a flow. Convex curvature
decreases normal stresses, while concave curvature increases them, and the degree of this change depends on the
ratio 3/ Ry, [9]. The correlation «'v is decreased on a convex surface and increased on a concave one compared to
a plane surface. In the case of moderately convex curvature the distribution of shear stressess over the boundary
layer cross section is described satisfactorily by the equation [7]

- _ - DEexp (PE @)’
ron, 2RO |1y (O8] 09

wherel = 0.8 [ 1 + exp (— l—:-%ﬁ) } exp (2 |@|); @=A-2/R,; E=(|D] 5)0'5 exp (0.2 |@));
A= ;6— drp is the parameter of the pressure gradient.
w dx

Turbulent viscosity, just like other turbulent characteristics, is increased on a concave surface and
decreased on a convex one. The influence of curvature on the thermal turbulent characteristics is similar to its
effect on the hydrodynamic turbulent parameters.

The curvature of the surface exerts a nonlinear effect on surface friction and heat transfer. In the case of
moderately convex curvature (8/Ry = 0.01) the value of ¢; is 10—20% smaller than on a plane surface, and at
d/R,, = 0.1 this decrease is already equal to 25—-35%,. Concave curvature exerts an opposite effect on surface
friction. For a convex surface it was obtained that ¢ ~Re™ ! at d/Ry, = 0.1 and ¢ ~Re™ 0 4y 8/Ry =
0.01-0.013; this is an intermediate case between a boundary layer on a plane wall (¢ ~Re"_0'25) and significant
curvature.

In a thermal boundary layer St ~Re}'ﬁ0‘55 for moderate curvature (8/R,, = 0.01) and St ~Re;.'—l for
significant curvature, indicating approximately the same effect of curvature on friction and heat transfer.

To describe the effect of curvature on surface friction and heat transfer various equations that can be found
in [7] have been suggested. For a convex surface under quasi-isothermal conditions the formulas suggested at the
ITTP NAS of Ukraine correspond most fully to the nonlinear character of the curvature effect:

. 29008""/R,) %, 8"/R, =0...0.003, 6y
" lose - 10°5"" /R, 5™ /R, = 0.003 ... 0.008 ;
We=(1+10"8"/R)" "', 6"/R, =0..0011. (17)

For a concave surface under nonisothermal conditions the most reliable equation for Wx has the form [8]

-k

W, = |1+ 18002
R

l+—¥=1l ) (18)
201 +yn )

w

where y = T,/ Ty is the temperature factor; n is the exponent in the equation for the velocity profile w = £". Here
the combination in round brackets takes account of an additional effect caused by centrifugal temperature
stratification.

For the relative function of heat transfer ‘U; the Reynolds analogy can be used in the form Wg = \P}; (71
With allowance for the difference of the Prandtl number from unity, the following equations were obtained in [8 ]:

t

b
Wo = |1 +abPr 2eyr, |1+ —= L I (19)
2(1 +yn )
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where a = 2200 and &= —0.115 for a convex wall and a = 1800 and b = 0.162 for a concave one. A comparison of
Egs. (16)-(19) with experimental data obtained by M. Gibson, R. So, B. Mayle, P. Bradshaw, T. Symon, B. Moffat,
and other authors is given in [7, 9].

2.4. Shear Flow. Main Section. Effect of Various Factors. Under actual conditions, flow and heat transfer
near curvilinear surfaces are compounded by various factors such as pressure gradient, compressibility,
nonisothermicity, injection through a porous wall, etc.

2.4.]. Longitudinal Pressure Gradient. The effect of positive and negative longitudinal pressure gradients
on local, turbulent, and integral characteristics of a boundary layer near convex and concave surfaces are considered
in detail in [7, 9]. Of the main results obtained we can mention here that:

1) on a convex surface, when dP/dx > 0, the critical parameter of flow separation is decreased considerably
due to a decrease in the boundary layer thickness;

2) in the region of the joint effect of flow acceleration and convex curvature St ~Re}"2, indicating the
additivity of the effect of these factors. This is due to the fact that convex curvature smoothes out turbulence in
the outer region of the boundary layer, while acceleration causes growth of the viscous-sublayer thickness;

3) in calculations of friction and heat transfer the additivity principle is applicable if a correction is used
that characterizes the effect of curvature on the critical parameter of the pressure gradient [7].

2.4.2. Compressibility. The effects of the compressibility of a flow on convex and concave surfaces under
conditions of a pressure gradient were studied in [15, 16 ). For air with M, < 4.0 the relative functions of curvature
for convex and concave walls have the form

R, >0, Wg=(1+22058"/R,)" """ Wi=(+22006"/r,) """,

3

0.19

R, <0, Wg= (1 + 18008 /R,) e

. We=(1+18005""/R,
and with an error not exceeding 20% they agree with the eguations for Wg and \P}; for an incompressible flow.
Thus, the curvature effects are approximately identical for subsonic and supersonic regimes of flow.

When dP/dx > 0, the boundary layer separation for convex and concave surfaces is determined by the
equations

AR Ay =+ 11508 /R) " AR sAg L= (1 + 115087 /R

The equation corresponding to a convex wall differs substantially from the results obtained for an incompressible
flow, indicating a stronger effect of surface curvature on boundary layer stability at large Mach numbers.

Equations for the relative functions of friction and heat transfer on a convex/concave surface when
dP/dx < Q are presented in [15, 16). Analysis of these equations shows that the principle of the additivity of
curvature and pressure gradient can also be used for a compressible flow with account taken of the correction to
the critical parameter of flow separation for the curvature. This result seems to be extremely important, since it
allows one to substantially simplify the calculation procedure and use the algorithms of a plane turbulent flow.

2.4.3. External Turbulence. The influence of external turbulence on heat transfer and hydrodynamics near
a curvilinear surface was investigated only in {7, 13]. The main results of these investigations are:

1) just as on a plane surface, the external turbulence near a convex wall increases the fullness of the velocity
profile and decreases the viscous-sublayer thickness;

2) the shear stresses are increased over the entire thickness of the boundary layer; in the outer part negative

values of 1, were discovered even at /R, = 0.03 due to the negative value of the generation term G; in the balance
equation for shear stresses; —

3) the turbulent characteristics T , v'T, and u'T in the presence and absence of external turbulence near

a convex surface virtually coincide, indicating the dominance of the curvature effect over the effect of external
turbulence;

4) in the region with 8/R,, < 0.08 the values of W, are correlated satisfactorily by the equations

700



Wo,=1+0021Tu'™ at Tu=0..3%,

W, =0922Tu®"? at Tu=3.7%.

They virtually coincide with results obtained on a flat plate, i.e., in the present case too one can apply the principle
of additivity of curvature and external turbulence.

2.4.4. Injection through a Porous Wall. There are virtually no works devoted to the effect of porous injection
through a curvilinear wall on friction and heat transfer. Individual results of a theoretical calculation on this problem
are presented in [17]. They show that:

1) convex curvature decreases the critical parameter of injection. The value of this parameter on a convex
surface is determined by the equation b., = bg,[l + 1036“/Rw 17952 This equation can also be used for determining
the thermal critical parameter of injection;

2) when using the above formula, it is possibie to employ relative functions of injection obtained for a plane
surface. In this case the condition of additivity of injection and curvature is satisfied;

3) injection exerts a major influence on viscous and thermal sublayers; the action of curvature is
concentrated mainly in the outer part of the boundary layer.

2.4.5. Nonisothermicity. Centrifugal forces in a boundary layer favor strengthening of turbulent transfer
near a concave wall and its weakening near a convex wall. The corresponding effect in the case of differences
between the temperatures of a flow and a wall is taken into account by the term in square brackets in Eq. (19). It
is recommended that the "pure” effect of nonisothermicity be determined from relations for a plane wall [8].

2.5. Semiinfinite Jet and Gas Screen. The hydrodynamics of a semiinfinite jet near a curvilinear surface
has specific features. In this case near the curvilinear surface one observes regions with an active and conservative
character of the action of centrifugal forces. Near a convex wall the zone of active effect is located in the shear
portion of the profile, while outside it there is a zone of conservative effect. The reverse is the case for a concave
wall. As a result, there is a transport of energy of turbulence from the region of active to the region of conservative
effect, which is refiected in the distribution of turbulence, flow, and heat transfer.

A few investigations of the heat transfer and hydrodynamics of jet flows near curvilinear surfaces were
mainly carried out at the ITTP NAS of Ukraine [18, 19], as well as at the University of Minnesota under the
leadership of Prof. R. Goldstein. Due to the action of centrifugal forces the fullness of the velocity profile in its
shear portion increases near a concave surface and decreases near a convex one. The equation for calculating the
cxponent n in this region has the following form 0,/ R,, < 0.020) {18, 19]:

ning=1+a(@,/R) (20)

where a = —1.7, b = 0.31 for a convex wall; a = 2.69, 5 = 0.85 for a concave wall (ng = 12). In the jet portion of
the profile the curvature hardly changes the distribution velocity and corresponds to a plane semiinfinite jet.

The temperature profile near a concave surface is described satisfactorily by the power-law relation 6 =
(y/éT)1 ‘™M where m=mg(l + 4.4(0p/ | le)o‘s6 ]. Some additional data characterizing the hydrodynamics of flow
near convex and concave surfaces can be found in [18, 19].

For calculating local heat transfer near convex and concave walls the following equation is used [18, 191]:

(Nu /Nuglg, =1+ a [65/R, = b1, (21

where a = 4.149, 5 = 0.002, ¢ = 0.65 for a concave wall; a = —23.69, b = 0.0005, ¢ = 0.81 for a convex wall.

The longitudinal curvature of a surface influences substantially the efficiency of a gas screen. Convex
curvature stabilizes a flow and thus increases the efficiency of a gas screen compared to a plane surface; concave
curvature exerts the opposite effect.

The theoretical and experimental investigations of the efficiency of a gas screen near curvilinear surfaces
are few in number. Individual aspects of this problem were investigated by B. Mayle, A. V. Shchukin, and M. Blair,
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at the ITTP NAS of Ukraine {7], and at the [TP SB RAS [8]. In [7] it was substantiated experimentally that the
efficiency of a gas screen in the case of slit injection in front of a convex surface is determined by the equation for
a plane surface with allowance for the curvature factor:

-08
=11 +024 LR P o (22)
n ms s R

where m is the injection parameter; the quantity Wg = (c¢/ cgg)g,** is determined from Egs. (16) and (17). Allowance
for the influence of flow acceleration and external turbulence on the efficiency of a gas screen is made by using
corrections given in [7]. It is also shown in that work that the difference in the efficiency of a gas screen for discrete
injection and continuous injection through a siit corresponds to the laws of a flat plate.

There are no reliable equations in the literature for calculating the efficiency of a gas screen near a concave
surface. Taking into consideration results obtained by A. V. Shchukin (Kazan’ Aviation Institute), as well as resuits
obtained at the ITTP NAS of Ukraine, it is possible to recommend using Eq. (22) with allowance for Eqs. (18) and
(19).

2.6. Semiempirical Hypotheses. Various models are used to calculate turbulent shear stresses and heat
fluxes over the cross section of a boundary layer. According to the mixing path theory for curvilinear flows, the
value of 1, is determined from the equation

r

P (au . u)z (23)
Tl—p '87__— .

The plus sign corresponds to the hypothesis of conservation of velocity circulation, and the minus sign corresponds
to the hypothesis of conservation of the angular velocity of rotation. In this case the mixing path length / is a
function of the curvature of the streamlines.

P. Bradshaw suggested the following equation for determining the relative mixing path length near a
curvilinear surface:

iy = (1 £ BRI, (24)

where N is a constant. Its drawback is an instantaneous change in [ with a jumpwise change in the surface curvature.
Allowance for this factor in theoretical models is made by using an effective curvature radius determined by
formulas (11) and (12).

Basic equations suggested for calculating the ratio {//y are given in {7 ]. In a number of cases the difference
between them attains 200—300%. For a shear flow near a convex surface relations that agree satisfactorily with
the majority of the data published [7] are given below:

N=1, B=1011+8-10°(""/R, — 107%)] %,

]

B=2-296th[0.72(10°8"" /R, - 1)],

N=-1, . -0.71
B=10(1+12308"/R) %7

The first of the equations for N = —1 is satisfied in the region of 8""/R, = 0.001 —0.003 and the second at
&** /Ry, = 0.003—0.008.

For conditions of significant curvature near a convex surface with a zone of negative friction in the outer

part of the boundary layer A. A. Khalatov, E. E. Tkonnikova, and A. V. Kuz'min suggested the following formula
(11, 17}

171y = exp (— 30 Ri) — 3.5Ri’ + 1.2Ri + 0.3. (25)
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In [8 ), on the basis of a theoretical approach, equations are suggested for convex and concave surfaces that
also agree well with experimental data:

2 1-025
R, >0, l/ly= [1 + (ll) Ri} ; (26)
0
2 4025
Ry <0, l/ly= {1 - (72) Ri] : (27)
0

V. Sovershennyi [7] suggested taking account of curvature effects in the formula for the linear dependence
of the mixing path length near a wall [7] (/= ky):

R,>0, k/kg=1-49258/R,; R, <0, k/ky=1-23.0758/R,,.

However, such an approach seems to be insufficiently accurate for calculating processes of heat transfer and
hydrodynamics.

In [16] an attempt was made to take account of the effect of curvature on turbulent viscosity in a
compressible flow by using the equation yu; = y?eR, where eg = 1 — fRi, with the Ri number being defined by an
expression given in Sec. 2.1. The parameter 8 depends on the specific-heat ratio k and the Mach number M, [15,
16]. The effect of curvature on the turbulent Prandtl number was investigated by R. So [7]. It was shown that it
was insignificant for the main section of the flow. In especially accurate calculations allowance for the effect of
curvature on the Prandtl number Pry can be made by using an equation suggested in [7].

In recent years various authors have extended the k—e&-model of turbulence to the case of curvilinear flows.
Allowance for the effect of the curvature of the streamlines on turbulent transfer of momentum is made in the
differential equation for ¢ by means of a correction introduced into the generation term using the equation C; =
1.44 + Ri. The coefficient Cy is increased in the region of suppression of turbulence (Ri > 0) and decreased in the
zone of its intensification (Ri < 0).

In semiinfinite jets, in the region of shear flow before the point where 7, = O turbulent shear stresses are
determined by Eq. (23), where [ = [p(] + aRi)b. For a convex wall a = 8.3 and 6= —1; for a concave wall a= —3.85
and 5 = 0.75 [18, 19]. In the jet portion of the profile the determination of turbulent friction is based on the
hypothesis of constancy of the mixing path length 7, = pr(b — O (um — up.5)0u/dy. Here b is the halfwidth of the
jet {71, and ug 5 is the velocity at the point y = b. For a curvilinear boundary layer the turbulence constant x =
ko[l + ¢c(3n/Ry)E]; in this case ¢ = 13.8 and g = 0.8 near a convex wall and ¢ = —9.75 and g = 0.78 near a concave
wall [18, 19]. Certain additional data that characterize normal turbulent stresses, the coordinate of the point of
zero turbulent friction, specific features of diffusion of turbulence from the region of active to the region of
conservative effect of centrifugal forces, and other data are presented in [18, 19].

2.7. Centrifugal Instability. One of the specific features of the hydrodynamics near curvilinear surfaces is
the appearance of Gortler longitudinal vortices in the boundary layer near a concave surface due to disturbance of
the balance between the centrifugal force and the transverse pressure gradient. Such vortices were first discovered
theoretically by H. Gortler {2]in a laminar regime of flow and by I. Tani in a turbulent flow [4]. Although a long
period of time has passed since their discovery, some problems of heat transfer, surface friction, and formation and
development of Gortler vortices have been investigated insufficiently as yet. The basic difficulty is accurate
calculation of the coefficients of heat transfer and friction across a concave wall due to their wavy variation.

In the last fifteen—twenty years various aspects of heat transfer and hydrodynamics associated with Gortler
vortices have been investigated in detail in the USA, Japan, and Germany. In Ukraine similar investigations have
been carried out at the Institutes of Hydrodynamics and Technical Thermophysics of the National Academy of
Sciences. In recent years, at the ITTP NAS of Ukraine linear and nonlinear approaches to analysis of centrifugal
instability have been worked out that are based on development of the Taylor method [20].
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In [20], in the case of a linear approximation with allowance for all the terms in the equation of motion,
rather accurate relations were obtained for the critical Gortler number that determines the appearance of vortices
in a laminar flow:

Go, = 22.97 at &/R,=0..002,

0.05
)

Go,, = 22.76 (3/R,, at /R, =002..0.1.

A comparison of these equations with earlier published theoretical calculations and experiments of Gortler,
Meksin, Aihara, Kahavita, Smith, et al. that was carried out in [2] ] shows that the approach developed in [20]
provides a good description of the majority of the experimental data (Gortler obtained the value Go., = 16) and
takes into account the slight change in the critical Gortler number as a function of the curvature &/ R,,. Satisfactory
agreement between the linear theory and experiments was also obtained for the wave number (the distance between
the axes of the vortices).

The linear approach makes it possible to predict on the whole a harmonic change in the coefficients of
friction and heat transfer across a concave surface. However, with such an approach, on the average a value of the
surface friction equal to the friction under conditions of nonvortical flow is maintained. This drawback is eliminated
by allowance for the quadratic terms in the disturbing amplitudes. This nonlinear approach was developed in [20].
Use of the nonlinear approach makes it possible to obtain more accurate data on heat transfer and surface friction.
Calculations carried out in [20] show that the effect of vortices on surface friction and heat transfer in a laminar
flow is very appreciable and may attain 80—90%. This effect depends little on the surface curvature 8/ Ry,.

Investigations devoted to Gortler vortices in a turbulent flow are very scarce. Suffice it to say that up to
now there are no reliable data on the value of the critical Gortler number corresponding to the appearance of vortices
in a turbulent boundary layer. In [21] an equation for the critical Gortler number is given that is obtained with
allowance for the effect of the curvature of the streamlines on the turbulent viscosity. In the region with 8/R,, =
0.01-0.02 it has the form

GO, = 3843 — 68520 3/R,, .

The value of Go., decreases with an increase in 8/ Ry, just like the wave number [21].

Results of investigation of the effect of a longitudinal pressure gradient, injection and suction from the
surface, and external turbulence of the flow on heat transfer, surface friction, the wave number, and the profiles
of the disturbing amplitudes are presented in works that were carried out in recent years at the ITTP NAS of
Ukraine [22-26].

2.8. Calculation Methods. Heat transfer and hydrodynamics near curvilinear surfaces are calculated by
methods based on the solution of differential and integral equations of motion and energy. In the differential
equations, the curvature of the streamlines leads to the appearance of the factor (1 + y/R,), which characterizes
the curvature radius of the streamlines, the additional terms 2t/pR,, and ¢/pc,Ry, in the equation of motion for
the longitudinal coordinate and the energy equation, and an additional relation that characterizes the transverse
pressure gradient dp/dy. Moreover, the curvature effects are reflected in the expression for t, as well as in the
semiempirical relations for turbulent friction and heat flux {7, 9, 10], In the integral equation of motion terms
appear that characterize the pulsational components across the boundary layer and the boundary layer curvature;
the integral expressions for the thermal boundary layer for curvilinear and plane flows agree with each other [9,
10).

Among the popular and rather simple methods of calculation are those based on L. Prandtl’s semiempirical
theory. Most frequently they are based on well-verified algorithms constructed for a plane boundary layer using
semiempirical relations that contain the effects of curvature (Eq. (15), Sec. 2.6). The specific features associated
with the change in the surface curvature radius (Egs. (11) and (12)) as well as the effects of negative turbulent
friction in the outer part of the boundary layer (Eqg. (25)) are taken into account over the adaptation and relaxation
lengths. In this case the results of calculation of turbulent flow and heat transfer are rather accurate (8, 11, 15-19]
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and reliable for practical application. Approximately the same approach to the caiculation of curvilinear flows was
developed in foreign works in which satisfactory results that take into consideration the effects of boundary layer
adaptation and relaxation were obtained [12-14].

Recent investigations showed that in complex flows near curvilinear surfaces the principle of additivity of
individual factors is satisfied with an accuracy sufficient for practical applications. This principle was developed by
A. 1. Leontiev and S. S. Kutateladze for plane flows. Using this approach, integral methods can be employed for
calculating heat transfer and surface friction in gradient flows [7, 9, 10] in the case of injection into a boundary
layer {17], as well as under conditions of nonisothermicity [8] and compressibility {15, 16]. Allowance for
curvature is made in corresponding parameters of equations for the laws of friction and heat transfer, such as the
critical parameters of flow separation and injection. This allows one to employ the algorithms used for calculations
of plane flows (Secs. 2.4 and 2.5).

Methods based on complicated versions of the semiempirical theory of turbulence have been [6, 19]
successfully employed for calculating curvilinear flows. In particular, allowance for the curvature effect in the
generation term of the equation for ¢ (in the k—¢-model) gives a noticeable improvement in calculations of the heat
transfer and hydrodynamics of semiinfinite jets [19].

In [26 ] an approach to calculation of heat transfer and friction near curvilinear surfaces has been developed
that is based on the analogy to internal flow with flow twisting. In this approach the internal twisted flow in a tube
corresponds to a flow past a “concave” wall, whereas the annular-channel flow corresponds to a flow past a "convex”
wall (inner tube) and a "concave” wall (outer tube). In this approach, gradient flows correspond to a twisted flow
in annular converging or diverging channels. In [26] it is shown that in this approach the geometric radius of the
surface "curvature” of the helical line in a tube (of a "concave" surface) R* = R(1 + tan’ g))/tan2 o differs from the
hydrodynamic radius R* =R tan p/(1 + tan’ <p)0'5. Here R* and R are the radii of the "concave" wall and the tube;
tan p = V,/Vy; V,, and V, are the rotational and axial components of the twisted flow near the tube surface.

Use of the effective radius of a concave surface R* makes it possible to perform calculations of friction and
heat transfer using relations for an internal twisted flow in a tube [27, 28 ).

3. TOPICAL PROBLEMS

Analysis of the investigations carried out shows that problems of heat transfer and hydrodynamics under
various conditions are considered in a great number of works. Nevertheless, many of the problems require further
investigation. These are:

1) extension and deepening of modern concepts of the physical structure and laws of heat transfer in shear
flows, semiinfinite jets, and gas screens under complicated boundary conditions (nonisothermicity, pressure
gradient, injection and suction, external turbulence, etc.);

2) investigation of the laws governing adaptation and relaxation of the boundary layer under various bound-
ary conditions;

3) investigation of the effect of two-phase flows (gas—solid particles, gas—liquid particles) on heat transfer
and hydrodynamics;

4) investigation of the effect of significant curvature (3/R,, > 0.1) on local, turbulent, and integral char-
acteristics of the boundary layer;

5) investigation of the laws governing transition from a laminar to a turbulent flow under complicated
boundary conditions; further study of the physical structure of Gortler centrifugal instability;

6) development of methods for calculating heat transfer and hydrodynamics toward complicated
semiempirical theories of turbulence, establishment of the relation with other types of flows in fields of centrifugal
forces.

In conclusion the author wishes to express his gratitude to his colleagues in the Department of High-
Temperature Thermogasdynamics at the Institute of Technical Thermophysics of the Nationa! Academy of Sciences
of Ukraine A. A. Avramenko (Cand. of Tech. Sci.), I. V. Shevchuk (Cand. of Tech. Sci.), 1. A. Izgoreva (Cand. of
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Tech. Sci.), A. V. Kuz'min (Cand. of Tech. Sci.), T. A. Zheleznaya (Cand. of Tech. Sci.), E. fi Ikonnikova
(Postgraduate Student), and S. G. Kobzar' (Postgraduate Student), who took an active part in advancements in

problems of heat transfer and hydrodynamics near curvilinear surfaces and whose results are used in the present
review.

NOTATION

cf, coefficient of friction; Go, Gortler number; # = §*/3**, form-parameter; &k = cp/ ¢y, specific-heat ratio;
m, n, exponents for the temperature and velocity profiles; M, Mach number; Nu, Nusselt number; P, static
pressure; Re, Reynolds number; R,,, surface curvature radius (R,, > 0, convex surface; Ry < 0, concave surface);
Ri, Richardson number, s, width of the slit of the gas screen; T, temperature; u, v, w, velocity components; up,
velocity of potential flow; upy, projection of the potential-flow velocity on the wall; x, y, z, rectangular coordinates;
4, thickness of the boundary layer; &°, 3", displacement and momentum loss thicknesses; 7", energy loss
thickness; 1, friction; r,, turbulent friction; u,, turbulent viscosity; v = u/p, kinematic viscosity; 8 =
T - Ty/T; - T,, dimensionless temperature; w = u/uw; & = y/d; Ag = 0(dP/dx)/ ty,, parameter of the pressure
gradient; 7, efficiency of the gas screen; Wr = (c1/crpre*; \U,Te = (S‘/Sto)ge? . Subscripts: a, adaptation, m,
maximum value; 0, entrance, flat plate; s, slit; f, flow; w, surface; 1, viscous sublayer; o, condition outside the
boundary layer.
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